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ABSTRACT

In this article, a coupling of Laplace transformation and Differential transform method is presented for
solving heat-like and wave-like equations with variable coefficients. We demonstrate that the proposed
method is very convenient for achieving the analytical solutions of 2D and 3D partial differential
equations. The numerical computation shows the efficiency and simplicity of the method.
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1. INTRODUCTION

The heat-like and wave-like equations can be found in a wide variety of engineering and
scientific applications. In recent years, many analytical and advanced methods are developed for
heat-like equations, wave-like equations and wave systems [1-4]. The Differential Transform
Method (DTM) is one of them. DTM is an analytical approach based on Taylor series expansion
was firstly applied in the engineering field by J.K. Zhou in 1986 for solving linear and nonlinear
equation associated with electrical circuit analysis [5]. DTM has been successfully applied to
solve different types of heat-like and wave-like equations [6]. In this paper, the coupling of
differential transform method and Laplace transformation is applied to obtain exact solutions of
heat-like and wave-like equations with variable coefficients. The Laplace-differential transform
method (LDTM) is an approximate analytical technique

for solving partial differential equations introduced by Marwan Alquran et al. [7] and it has been
successfully applied for solving different types of physical problems such as Cauchy reaction
diffusion equations and diffusion equation by Kiranta er al. [8-9]. The suggested algorithm is
tested on 2-dimensional and 3-dimensional heat-like and wave-like equations. To the best of our
knowledge no such try has been made to combine LTM and DTM for solving 3-dimensional
heat-like and wave-like equations. Three examples for heat-like equations and three examples of
wave-like equations are solved to make clear the application of the transform and the numerical
results are very encouraging.

Heat-Like Equation

We consider a heat-like equation with variable coefficients described by a three-dimensional
initial value problem (IVP) of the form
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u, = fx,y, 2, +glx, z)u”, +h(x, y, z)uzz, 0<x<a,0<y<b,0<z<c,t>0,
with the initial conditions, (1.1)
u(x, y,2,0) = g(x, y, 2)

(1.2)
Wave-Like Equation
We consider a wave-like equation with variable coefficients described by a
three-dimensional initial value problem (IVP) of the form

u, =f(x,y’Z)Mxﬁg(x,y,Z)uyy+h(x,y,z)um, 0<x<a,0<y<b,0<z<ec,t>0,

(1.3)
with the initial conditions
ulx,y,2,0)=0(x, y.2).  u(x, y.2.0)=0(x, y,2) (1.4)
2. N-DIMENSIONAL DIFFERENTIAL TRANSFORMATION
The differential transform of a function u(xl, Xypeees Xy s t) is defined as:

1 ot thy (x xy s, X, 1)
Uk,,kz,.“,k"(t):k TRIR a kzl 2 3 k=20
Lotz axl axz ”'ax" x,=0,x,=0,...,x,=0
2.1)

where u(x,, x,,..., x,,¢) is the original function and U KoKk (t)is the transformed function.

The inverse differential transformof U, , (1) is defined as:
(2.2)
O - k k2 k,
u(xl,xz,..., xn,t)z Z ZZ P (t)xl "X, x,
k=0k,=0 k,=0
In actual applications, the function u(xl,xz,..., xn,t) is expressed by a finite series and

equation (2.2) can be written as

my oy m, )

k. k? k,

u(xl,xz,...,xn,t)= Z ZZ Ui okyok, (t)xl "X, X,
k=0k,=0 k,=0

(2.3)

The fundamental mathematical operations performed by n-Dimensional Differential Transform
are listed in the following Table 1.
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Original Function Transformed Function

”(xl’xz’"-’ xn’t): f(xl’xZ""’ X ’[)i g(‘xJ O (t)z Fiook (t)in,,kz,.“,k” (t

k, Ky sk ( t)

)=a
ar],+r2+.4.+r,,u(xl’xz,.“, x| kl ks ([): (k +1) (k2 + 7"1 )(kn +1)
dx,"dx,"” ..0x," ---(kn T, )Fkl+rl,m,kn+r,, (1)

n

w(x, Xy x,, 1) = @ f (X, X0y X, 1) Ui .. (t

(X, Xy ey X, ,1) =

no

a

u(x,, Xyooor x,,1) = x," X, 0x, " Uity (1)=6(k —ay ky —a.s k, —a,

n 1

u(xl,xz,...,xn,t)=f(xl,xz,...,xn,t)g(xl,xz, U b i "Z:

3. Basic IDEA OF LptMm

To illustrate the basic idea of Laplace differential transform method [7], we consider the heat-like
and wave-like equations.

3.1 SOLUTION OF THE HEAT-LIKE EQUATION BY LDTM

We consider a heat-like equation with variable coefficients described by a three-dimensional
initial value problem (IVP) of the form

u, = f(x, v, z)u” + g(x, v, z)u”, +h(x, v, Z)”u’ xe R,te R*,
(3.1
with the initial conditions,

u(x, Y, Z?O)=¢(x’ Vs Z) 3.2)

and the spatial conditions

w(©,y,z.t)=a, (v, 2.t), u(x,0,z,1)=a, (x,z,t), ulx, y,0,t)= a, (x, y,1).

(3.3)
Taking the Laplace Transformation of equation (3.1), w.r.to‘t’, we get
s L[M(X, y, 2, t)]_ u(xa ya Z,O) = L|_f(x’ y’ Z)um + g(‘x’ y’ Z)uyy + h’(‘x’ y’ Z)uzzJ‘
By using I.C. (3.2), we get
Llu(x,y.z.1)]= pley.a) | Ll Gy o, + 8oy, 2, +h(xy, 2, |
s s ’
(3.4)
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Now, applying the DTM on the equation (3.4) with respect to ‘x’, ‘y’, ‘z’, we get

L[Uk,h,m()] l¢khm+ L[zzz r+2 r+l r+25ml()krh sl(t):|+

r=0 s=0 [=0

Zm: S + 2 s+ l r s+2,ml(t)Gkr,hs,Z(t):| +

m l+ 2 m—= l+ l)Ur s,m— l( )Hk—r,h—s,l(t):| .

(3.5)
Taking the inverse Laplace transformation of equation (3.5), we get

m

U, )=k, h,m +L‘[ [izh:

r=0 s=0 I=

{ {Zk:o Zh:o ,Z(; (s+2) s+ 10U, 110 (G, (t)ﬂ s
{ {Zk: Zh: Zm: —1+2)m—-1+1U, . @)H,,, ., (t)ﬂ_

r=0 s=0 =0

r + 2 r+ I)Ur+2,s,m—l (t)Fk—r,h—s,l (t)ﬂ +

(3.6)
Now, applying the DTM on the given spatial condition (3.3), we get

Uoim (t)z a, (y, Z’t)’Uk,O,m (z): a, (x, Z’t)’Uk,h,O (t)z a, (x, y,t). (3.7)

Now using the equation (3.7) in (3.6), the solution in the series form is given by

k h m
k  h_m
Xy,Zt:ZZ Ukhm xyZ .

r=0 s=0 [=

3.2 SOLUTION OF THE WAVE-LIKE EQUATION BY LDTM

We consider a wave-like equation with variable coefficients described by a three-dimensional
initial value problem (IVP) of the form

= f(x, v, z)uxx + g(x, v, z)uyy +h(x, v, z)uzz, xe R,te R",

(3.8)
with the initial conditions,
ulx, y,2,0)=¢(x, y,2).  u,(x,y,2.0)=0(x, y,2).
(3.9)
and the spatial conditions
u(0,y,z,t)=a, (v, 2,1), ulx,0,z,t)=a, (x,z,1), ulx, y,0,t)= e, (x, y,t)
(3.10)

and
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w (0,y,2.0)= B (y.z.1), u,(x,0,2,1)= B, (x, z.1), u(x,7.0,1)= B, (x, y.1).
(3.11)

Taking the Laplace Transformation of equation (3.8), w.r.to‘t’, we get

szL[u(x,y,z,t)]—su(x,y,z,O)—ut(x,y,z0 L[f x ¥, 2 )u +g(x v, z) +h(x v, z) ]

By using I.C. (3.9), we get

1 1 1
Llu(x, y, z.t)]= » #(x, y, 2)+ = o(x, y,2)+ = LLf (v, 2y + gy, 2y, +h(x v, 2, |-

(3.12)
Now, applying the DTM on the equation (3.12) with respect to ‘x’, y’, ‘z’, we get
L [Uk,h,m (t)] = E ¢(k’ h$ m)+ S_2 ¢(k, h, m)+
1 [k h m
S_2 L Z Z Z r+ 2 r+ I)U r+2,s,m-l (t)Fk—r,h—x,l (t):| +
L r=0 s=0 [=0
1 [ & h  m
_2 L Z Z S + 2 s+ l)U ros+2,m—1 (t)Gk—r,h—s,l (t):| +
s L r=0 5=0 =0
1 [ & h m
_ZL Z Z _l+2)( _l+l)Ur,s,mfl (t)Hk—r,hfs,l (t):|
s L r=0 5=0 =0
(3.13)
Taking the inverse Laplace transformation of equation (3.13), we get
Ui (6)= @l hm)+ 1k, h,m)+
1 [& &
E LSS DM 070+
Lr=0 s=0 [=0
l_ l [ & h m
L_ 2 L z (S + 2)(S + I)Ur,s+2,mfl (t)Gk—r,hfs,l (t):|:| +
LS Lr=0s=01=0
) S
I ED 3 e +1)u,,s,m_,(r)Hk_,,h_s,,(oﬂ.
L Lr=0 s=0 [=0
(3.14)
Now, applying the DTM on the given spatial condition (3.10) and (3.11), we get
U (t) =a, (y’ <, t)’ Utom (t) =a, (x, <, t)’ Uino (t) =0, (x, Y, t)
(3.15)
and
Ul,h,m(t): ,b’l(y,z,t) klm( ) ﬂz(x <, t) Ui ( ) ﬁz(x y,t )
(3.16)

Now using the equation (3.15) and (3.16) in (3.14), the solution in the series form is given by
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k h m

u(x,y,z,t)zzz Uk,h,m(t)xkyhzm‘

r=0 s=0 [=0

4. NUMERICAL APPLICATIONS

4.1. HEAT-LIKE MODELS

In this section, three Heat-like models from each type will be tested by using the LDTM.
Example 1. Consider the one-dimensional heat-like model

2 2
du _x du O<x<l,t>0,

a2 ut

4.1
with the initial conditions,
u (x, 0) =x?

4.2)

In this technique, first we apply the Laplace transformation on equation (4.1) with respect to ‘t’,
therefore, we get

e L{%?}T}

By using initial conditions from equation (4.2), we get

2 x az ]
L , = L
[u(x t)] s +s {2 ox* |

Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides:

x? 0%u
, L L .
wle)= '+ { Lax }

The next step is applying the Differential transformation method with respect to space variable

X, we get
UL(0)= 60k - 2t+L[ [z - r+1)U,+2()(k—r—2,t)H;

By straightforward iterative steps, we get the component U k(t),k >0 of the DTM can be

obtained.
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1 k=1
U,(t)=1¢" k=2 (4.3)
0 else

Finally, the closed form solution is given by

= iUk(t)xk =x’e'.
k=0

which is the exact solution.

Example 2. Consider the two-dimensional heat-like model

au 1 2 aZu 2 azu
- = —+x_, 0<x7 <17t>0’
ot 2{y ox” dy’ g

(4.4)

with the initial conditions,
u(x, y,0)=2y2. (4.5)
In this technique, first we apply the Laplace transformation on equation (4.4) with respect to ‘t’,

therefore, we get

2 2
sl vl y0) =1l S0 0

By using initial conditions from equation (4.5), we get

2y’ 1 02 92
ity =2l S S

Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides:

o’u o’u
u(x,y, ) 2y +L {% L{y o +xza—y2ﬂ.

The next step is applying the Differential transformation method with respect to space variable
‘x” and ‘y’, we get

k

U,,{t)=25k h-2,t)+L { {ZZ”“ r+2 r+1)Ur+2hS()é‘(k—r,s—Z,t)ﬂ+

r=0 s=0

{ [ii s+ 25 +10, ,Hz()a(r—z,h—s,z)ﬂ;

r=0 s=0
By straightforward iterative steps, we get the component U, , (t), k>20,h >0 of the DTM can

be obtained.
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2sinh(t)  k=2,h=0
U,,(t)=42cosh(t) k=0,h=2

0 else
(4.6)
Finally, the closed form solution is given by
ulx, y,1) ZZ y" =2x? sinh(r)+2y? cosh(t).
k=0 h=0
which is the exact solution.
Example 3. Consider the three-dimensional heat-like model
ou o 82 ,0u  ,0u
— z+— —+y —+z7—|, O<x,y,2<1,t>0,
YRS M YRR PN Y
“4.7)
with the initial conditions,
u(x, v, Z, 0) =0.
(4.8)

In this technique, first we apply the Laplace transformation on equation (4.7) with respect to ‘t’,

therefore, we get

azu azu azu
sLu(x, y, z,1)]-ulx, y, 2,0)= [x4 4 4]Jr.% { Rt Jy’ e azz}

By using initial conditions from equation (4.8), we get
1[4 44 1 ,0u ,0u ,0u

Luxa aZat =—F|X Z +_Lx—+ —+ 77— X
lu(x, v, 2.1)] sz[ y'e'] TR A e

Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides:

1 0%u 0%u 0%u
cot)=tlxtyt 2t [+ L L] x* +y? +7? )
ulx,y, 2, [x ] {36s [x ox’ Y oy’ ‘ azzﬂ

The next step is applying the Differential transformation method with respect to space variable

c’cy

x’, ‘y’ and ‘z’, we get
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Ui ont)=15(k =4, h—4,m—4,1)+

B [ & h m
C sy (r+z)(r+1)u,+2,j_m_,(t)5(k_r—z,h—s,z,z)ﬂ+
| 365 |10 10
B [k h m
i > (s+2)s+1)U, MmZ(t)§(k—r,h—s—2,l,t)ﬂ+
36s | =0 s=0 [=0 T
B [k h m
L > (m—1+2)m-1+1)U, SmHz(t)é'(k—r,h—s,l—2,t)ﬂ;
_36S L r=0 s=0 I=0 o

By straightforward iterative steps, we get the component U, , (t), k=20,h=20 and m =0of

the DTM can be obtained.
e -1 k=4, h=4m=4
Uk,h,m (t) =
0 else

4.9)

Finally, the closed form solution is given by
xyzt:zzz k/lm xy Z _x4y4z4(et_1)‘
k=0 h=0 m=0

which is the exact solution.
4.2. WAVE-LIKE MODELS
In this section, we illustrate our analysis by examining the following three Wave-like equations.

Example 4. Consider the one-dimensional wave-like model

2 2 2
auzx—a—u O0<x<1,t>0,

o’ 2 ox?’

(4.10)
with the initial conditions,
u(x,0)=x, u,(x,0)=x2, (4.11)

In this technique, first we apply the Laplace transformation on equation (4.10) with respect to ‘t’,

therefore, we get

¢ L, )] su(x.0)—1, (+.0) = L[X—z a_}

2 ox*

By using initial conditions from equation (4.11), we get
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2 2 2
L[u(x,t)]=ﬁ+x_2+i2{x_a_“}
N

s s 2 ox?

Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides:

2
u(x,t) x+xt+ L — L =— X 0% .
s2 2 ox’

The next step is applying the Differential transformation method with respect to space variable

X, we get
U ()= 6k —1.1)+ 16(k - u)w{ [z r o)1 ,ﬂ(t)a(k_r_z,t)ﬂ;

By straightforward iterative steps, we get the component U k(t),k >0 of the DTM can be

obtained.
1 k=1
U,(t)=1sinh(t) k=2 4.12)
0 else

Finally, the closed form solution is given by
= z U, (t)x* = x+ x* sinh (¢).
k=0
which is the exact solution.
Example 5. Consider the two-dimensional wave-like model

2 2 2
J ?:i xza—b;+yza—b;, 0<x,y<l, t>0,
ot 12 ox dy

(4.13)

with the initial conditions,

ulx, y,0)=x*, u,(xy0)=y"

4.14)
In this technique, first we apply the Laplace transformation on equation (4.13) with respect to ‘t’,

therefore, we get
,0u azu}

1
52 L[u(x, y,t)]—su(x, y,O) (x v, 0)— T { §+ y a—y2

By using initial conditions from equation (4.14), we get
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xt oyt 1 ,0u ,0%u
Liulx, y,t)|l=—+—+ Ll x*—+ .
e, . s st 12s° ox’ ’ dy’

Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides:

o1 0%u 0%u

The next step is applying the Differential transformation method with respect to space variable
‘x’” and ‘y’, we get
U,,(t)=0k-4,ht)+15(k,h—4,1)+

L[ : L{ii(wz)(rﬂ)uﬁz,ﬂ_s ()5t ‘r‘z’s’t)ﬂ+

2
125 r=0 s=0

1252

L[ ! L{Zk: (s+z)(s+1)Uk,M(t)a(r,h_s-z,t)ﬂ;

By straightforward iterative steps, we get the component U, , (t), k=>0,h >0 of the DTM can

be obtained.
cosh(r) k=4,h=0
U,,[t)=1{sinh(t) k=0,rh=4

0 else

(4.15)
Finally, the closed form solution is given by
ulx, y, )= z Z Uk,h(t)xkyh = x* cosh(¢)+ y* sinh(z).
k=0 h=0
which is the exact solution.
Example 6. Consider the three-dimensional wave-like model
u  , 5, o, 1| ,0u ,9u ,9u
—S =Xty +t+—| X —=+y —S+z7—| 0<xy,z<L >0,
Y Y 21T T T % Y
(4.16)
with the initial conditions,
u(x,3,2,0)=0, u,(xy,z0)=x"+y> -2
4.17)
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In this technique, first we apply the Laplace transformation on equation (4.16) with respect to ‘t’,
therefore, we get

+y' —+z

1 1 0’ 0’ 0’
szL[u(x, Y, Z, t)]— su(x, Y, z,O)— u, (x, Y, z,O) = ; [x2 + y2 + z2]+ 5 L{)f a—xbzt aybzt 2 a—;j}

By using initial conditions from equation (4.17), we get

ile,y,el=5 [ 4y -2 e[ oy v e 212 L[x
N s g

282u+ 282u+Z2 d’u
D |

Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides:

282u+ 2&4_ zazuﬂ‘

t’ a1
M()C,y,Z,l)=l[X2+y2—Z2]+E[X2+y2+22]+L1|:FL|:X y y ayz Z a_zz

The next step is applying the Differential transformation method with respect to space variable

[ . )

x’, ‘y’ and ‘z’, we get

2

2 2
U (t)= {t + %}6(k —2,h,m,t)+ {t +%}5(k,h —2,m,t)—- |:t —%}5(k,h,m —-2,1)

k h m
LSS S 42+ s, (8K - r =20 - s,z,t)ﬂ +
1257 [0S
B Mk h m
I Lz LS (s+2)s +1)U, gy (0)5(k = roh— 5 - 2,l,t)ﬂ +
_2S r=0 s=0 [=0
[ Mk h m
L Z%L SHIDm—142)m—1+1)U, 1, (0)S(k = r h—s,1- 2,t)ﬂ;
L <8 [ r=0 =0 (=0

By straightforward iterative steps, we get the component U, , (t), k=20,h=20 and m >=0of
the DTM can be obtained.

e -1 k=2,h=0,m=0

e —1 k=0,h=2,m=0

e —1 k=0,h=0,m=2

otherwise

Uk,h,m (t) =

(4.18)

Finally, the closed form solution is given by
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u(x, y, Z’t):ii DU )x y" 2" = xz(el —1)"‘ yz(e’ —l)+zz(e” —l)
which is the exact solution.

5. CONCLUSION

In this study, we apply Differential Transform Method (DTM) coupled with Laplace
Transformation is presented for solving heat-like and wave-like equations with variable
coefficients which arise very frequently in physical problems related to applied sciences and
engineering [2], [6]. We demonstrate that the proposed method is very convenient for achieving
the analytical solutions of 2-D and 3-D partial differential equations. It is observed that the
proposed technique is suitable for such type of problems, it gives rapidly converging series
solutions and gives excellent accuracy for finding and is very user-friendly. Computational work
and subsequent results are fully supportive of the reliability, simplicity, efficiency and accuracy
of the suggested scheme.
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