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ABSTRACT 

 
In this article, a coupling of Laplace transformation and Differential transform method is presented for 

solving heat-like and wave-like equations with variable coefficients. We demonstrate that the proposed 

method is very convenient for achieving the analytical solutions of 2D and 3D partial differential 

equations. The numerical computation shows the efficiency and simplicity of the method. 
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1. INTRODUCTION 
 

The heat-like and wave-like equations can be found in a wide variety of engineering and 

scientific applications. In recent years, many analytical and advanced methods are developed for 

heat-like equations, wave-like equations and wave systems  [1-4]. The  Differential Transform 

Method (DTM) is one of them. DTM is an analytical approach based on Taylor series expansion 

was firstly applied in the engineering field by J.K. Zhou in 1986 for solving linear and nonlinear 

equation associated with electrical circuit analysis [5]. DTM has been successfully applied to 

solve different types of heat-like and wave-like equations [6].  In this paper, the coupling of 

differential transform method and Laplace transformation is applied to obtain exact solutions of 

heat-like and wave-like equations with variable coefficients. The Laplace-differential transform 

method (LDTM) is an approximate analytical technique  

 
for solving partial differential equations introduced by Marwan Alquran et al. [7] and it has been 

successfully applied for solving different types of physical problems such as Cauchy reaction 

diffusion equations and diffusion equation by Kiranta et al. [8-9]. The suggested algorithm is 

tested on 2-dimensional and 3-dimensional heat-like and wave-like equations. To the best of our 

knowledge no such try has been made to combine LTM and DTM for solving 3-dimensional 

heat-like and wave-like equations. Three examples for heat-like equations and three examples of 

wave-like equations are solved to make clear the application of the transform and the numerical 

results are very encouraging. 

 

Heat-Like Equation  
 

We consider a heat-like equation with variable coefficients described by a three-dimensional 

initial value problem (IVP) of the form 
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( ) ( ) ( ) ,0,0,0,0,,,,,,, ><<<<<<++= tczbyaxuzyxhuzyxguzyxfu zzyyxxt

               
 

with the initial conditions,                                                                  (1.1) 

( ) ( ).,,0,,, zyxzyxu φ=
 

                         
                                                                   (1.2) 

Wave-Like Equation  

We consider a wave-like equation with variable coefficients described by a 

three-dimensional initial value problem (IVP) of the form 

( ) ( ) ( ) ,0,0,0,0,,,,,,, ><<<<<<++= tczbyaxuzyxhuzyxguzyxfu zzyyxxtt

                       

                                                                                    (1.3) 

with the initial conditions 

( ) ( ) ( ) ( ).,,0,,,,,,0,,, zyxzyxuzyxzyxu t ϕφ ==
 
                                 (1.4)                              

 

2. N-DIMENSIONAL DIFFERENTIAL TRANSFORMATION 

The differential transform of a function ( )txxxu n ,,...,, 21  
is defined as: 
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where ( )txxxu n ,,...,, 21
 is the original function and ( )tU

nkkk ,...,, 21
is the transformed function. 

The inverse differential transform of ( )tU
nkkk ,...,, 21

 is defined as: 

     (2.2) 
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In actual applications, the function ( )txxxu n ,,...,, 21
 is expressed by a finite series and 

equation (2.2) can be written as 
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                                                                                         (2.3) 

The fundamental mathematical operations performed by n-Dimensional Differential Transform 

are listed in the following Table 1. 
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Original Function Transformed Function 
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3. BASIC IDEA OF LDTM  
 

To illustrate the basic idea of Laplace differential transform method [7], we consider the heat-like 

and wave-like equations. 

 

3.1 SOLUTION OF THE HEAT-LIKE EQUATION BY LDTM 
 

We consider a heat-like equation with variable coefficients described by a three-dimensional 

initial value problem (IVP) of the form  

 

( ) ( ) ( ) ,,,,,,,,, +∈∈++= RtRxuzyxhuzyxguzyxfu zzyyxxt

                        (3.1)       
 

with the initial conditions, 

( ) ( )zyxzyxu ,,0,,, φ=                                                                    (3.2) 

and the spatial conditions 

( ) ( ) ( ) ( ) ( ) ( ).,,,0,,,,,,,0,,,,,,,0 321 tyxtyxutzxtzxutzytzyu ααα ===
                                 

                                                                                            (3.3) 

Taking the Laplace Transformation of equation (3.1), w.r.to‘t’, we get 

 

( )[ ] ( ) ( ) ( ) ( )[ ].,,,,,,0,,,,,, zzyyxx uzyxhuzyxguzyxfLzyxutzyxuLs ++=−  

By using I.C. (3.2), we get 

( )[ ] ( ) ( ) ( ) ( )[ ].,,,,,,
1,,

,,, zzyyxx uzyxhuzyxguzyxfL
ss

zyx
tzyxuL +++=

φ
                             

                                                                                             (3.4) 
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Now, applying the DTM on the equation (3.4) with respect to ‘x’, ‘y’, ‘z’, we get 
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                                                                                            (3.5) 

Taking the inverse Laplace transformation of equation (3.5), we get 
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                                                                             (3.6) 

Now, applying the DTM on the given spatial condition (3.3), we get  

( ) ( ) ( ) ( ) ( ) ( ).,,,,,,,, 30,,2,0,1,,0 tyxtUtzxtUtzytU hkmkmh ααα ===
                      (3.7) 

Now using the equation (3.7) in (3.6), the solution in the series form is given by 
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3.2 SOLUTION OF THE WAVE-LIKE EQUATION BY LDTM 
 

We consider a wave-like equation with variable coefficients described by a three-dimensional 

initial value problem (IVP) of the form  

 

( ) ( ) ( ) ,,,,,,,,, +∈∈++= RtRxuzyxhuzyxguzyxfu zzyyxxtt

                                          
                                                                                            (3.8) 

with the initial conditions, 

( ) ( ) ( ) ( ),,,0,,,,,,0,,, zyxzyxuzyxzyxu t ϕφ ==                                                 

                                                                                            (3.9) 

and the spatial conditions 

( ) ( ) ( ) ( ) ( ) ( )tyxtyxutzxtzxutzytzyu ,,,0,,,,,,,0,,,,,,,0 321 ααα ===
                  

                                                                                           (3.10) 

and 
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( ) ( ) ( ) ( ) ( ) ( ).,,,0,,,,,,,0,,,,,,,0 321 tyxtyxutzxtzxutzytzyu zyx βββ ===
             

                                                                                         (3.11) 

Taking the Laplace Transformation of equation (3.8), w.r.to‘t’, we get 

( )[ ] ( ) ( ) ( ) ( ) ( )[ ].,,,,,,0,,,0,,,,,,2

zzyyxxt uzyxhuzyxguzyxfLzyxuzyxsutzyxuLs ++=−−

 

By using I.C. (3.9), we get 
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                                                                                          (3.12) 

 
Now, applying the DTM on the equation (3.12) with respect to ‘x’, ‘y’, ‘z’, we get
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                                                                                      (3.13)
 

Taking the inverse Laplace transformation of equation (3.13), we get 
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                                                                               (3.14)
 

Now, applying the DTM on the given spatial condition (3.10) and (3.11), we get  

( ) ( ) ( ) ( ) ( ) ( )tyxtUtzxtUtzytU hkmkmh ,,,,,,,, 30,,2,0,1,,0 ααα ===
                            

                                                                                      (3.15) 

and 

( ) ( ) ( ) ( ) ( ) ( ).,,,,,,,, 31,,2,1,1,,1 tyxtUtzxtUtzytU hkmkmh βββ ===
                            

                                                                                       (3.16)
 

Now using the equation (3.15) and (3.16) in (3.14), the solution in the series form is given by 
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4. NUMERICAL APPLICATIONS 
 

4.1. HEAT-LIKE MODELS 
 

In this section, three Heat-like models from each type will be tested by using the LDTM. 

Example 1. Consider the one-dimensional heat-like model 
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(4.1) 

with the initial conditions, 

( ) ,0,
2

xxu =                                                                               

 

                                                                                  (4.2) 
 

In this technique, first we apply the Laplace transformation on equation (4.1) with respect to ‘t’, 

therefore, we get 
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Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides: 
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The next step is applying the Differential transformation method with respect to space variable 

‘x’, we get 
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By straightforward iterative steps, we get the component ( ) 0, ≥ktU k
 of the DTM can be 

obtained. 
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Finally, the closed form solution is given by 
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which is the exact solution. 

Example 2. Consider the two-dimensional heat-like model 
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                                                                                           (4.4) 

with the initial conditions, 

( ) .20,,
2

yyxu =                                                                         (4.5) 

In this technique, first we apply the Laplace transformation on equation (4.4) with respect to ‘t’, 

therefore, we get 
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By using initial conditions from equation (4.5), we get 
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Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides: 
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The next step is applying the Differential transformation method with respect to space variable 

‘x’ and ‘y’, we get 
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By straightforward iterative steps, we get the component ( ) 0,0,, ≥≥ hktU hk
 of the DTM can 

be obtained. 
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Finally, the closed form solution is given by 
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which is the exact solution. 

Example 3. Consider the three-dimensional heat-like model 

,0,1,,0,
36

1
2

2
2

2

2
2

2

2
2444 ><<









∂

∂
+

∂

∂
+

∂

∂
+=

∂

∂
tzyx

z

u
z

y

u
y

x

u
xzyx

t

u

                       

 

                                                                                     
(4.7) 

with the initial conditions, 

( ) .00,,, =zyxu                                                                            

 

                                                                                     (4.8)  

In this technique, first we apply the Laplace transformation on equation (4.7) with respect to ‘t’, 

therefore, we get 
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By using initial conditions from equation (4.8), we get 
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Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides: 
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The next step is applying the Differential transformation method with respect to space variable 

‘x’, ‘y’ and ‘z’, we get 
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By straightforward iterative steps, we get the component ( ) 0,0,,, ≥≥ hktU mhk
 and 0≥m of 

the DTM can be obtained. 
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Finally, the closed form solution is given by 
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which is the exact solution. 

4.2. WAVE-LIKE MODELS 

In this section, we illustrate our analysis by examining the following three Wave-like equations. 

Example 4. Consider the one-dimensional wave-like model 
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with the initial conditions, 

( ) ,0, xxu =   ( ) ,0, 2
xxu t =

                                                          (4.11)
 

In this technique, first we apply the Laplace transformation on equation (4.10) with respect to ‘t’, 

therefore, we get 
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By using initial conditions from equation (4.11), we get 
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Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides: 
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The next step is applying the Differential transformation method with respect to space variable 

‘x’, we get 
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By straightforward iterative steps, we get the component ( ) 0, ≥ktU k
 of the DTM can be 

obtained. 
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Finally, the closed form solution is given by 
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which is the exact solution. 

Example 5. Consider the two-dimensional wave-like model 

,0,1,0,
12

1
2

2
2

2

2
2

2

2

><<








∂

∂
+

∂

∂
=

∂

∂
tyx

y

u
y

x

u
x

t

u

                                        

 

                                                                                          
(4.13) 

with the initial conditions, 
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                                                                                          (4.14) 

In this technique, first we apply the Laplace transformation on equation (4.13) with respect to ‘t’, 

therefore, we get 
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By using initial conditions from equation (4.14), we get 
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Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides: 
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The next step is applying the Differential transformation method with respect to space variable 

‘x’ and ‘y’, we get 
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By straightforward iterative steps, we get the component ( ) 0,0,, ≥≥ hktU hk
 of the DTM can 

be obtained. 
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                                                                                   (4.15)
 

Finally, the closed form solution is given by 
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which is the exact solution. 

Example 6. Consider the three-dimensional wave-like model 
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                                                                                          (4.16) 

with the initial conditions, 
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                                                                                          (4.17) 
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In this technique, first we apply the Laplace transformation on equation (4.16) with respect to ‘t’, 

therefore, we get 
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By using initial conditions from equation (4.17), we get 
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Now, we applying the Inverse Laplace transformation w.r.t. ‘s’ on both sides: 
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The next step is applying the Differential transformation method with respect to space variable 

‘x’, ‘y’ and ‘z’, we get 
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By straightforward iterative steps, we get the component ( ) 0,0,,, ≥≥ hktU mhk
 and 0≥m of 

the DTM can be obtained. 
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                                                                                           (4.18)
 

Finally, the closed form solution is given by 
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which is the exact solution. 
 

5. CONCLUSION  
 

In this study, we apply Differential Transform Method (DTM) coupled with Laplace 

Transformation is presented for solving heat-like and wave-like equations with variable 

coefficients which arise very frequently in physical problems related to applied sciences and 

engineering [2], [6]. We demonstrate that the proposed method is very convenient for achieving 

the analytical solutions of 2-D and 3-D partial differential equations. It is observed that the 

proposed technique is suitable for such type of problems, it gives rapidly converging series 

solutions and gives excellent accuracy for finding and is very user-friendly. Computational work 

and subsequent results are fully supportive of the reliability, simplicity, efficiency and accuracy 

of the suggested scheme.  
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