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ABSTRACT 

 
In the present paper, we find equations to characterize the projective changes between two important  

),( βα -metric which are 
2

32

α

β

α

β
βα +++=F  (second approximate Matsumoto metric) and 

βα
~~~

+=F  (Randers metric) and also between second approximate Matsumoto metric and  
β

α
~

~~
2

=F  

(Kropina metric), on a manifold with dimension 3≥n  where α and α~ are two Riemannian metrics,  β

and  β
~

 are two non-zero one forms.  Moreover we consider this projective change when F has some 

special curvature properties. 
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1. INTRODUCTION 

 
The Projective changes between two Finsler spaces have been researched and thought through by 

many geometers (see [4], [14], [15], [17]). It's been defined that two Finsler metrics on a smooth 

manifold M are considered to be Projectively equivalent in case they consists of the same 

geodesics as point sets and their geodesic coefficients is determined by the relation 

 

                                                                   .),(
~ iii

yyxPGG +=  
 

where ),( yxP  is supposed to be a scalar function on }0{\TM  with ),(),( yxPyxP λλ =  and the 

two Riemmanian metrics are considered to be Projectively equivalent on the condition that their 

spray coefficients are related by 
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here )(xττ =  represents a scalar function on the manifold M . Local coordinates in the tangent 

bundle TM is denoted by ),(
ji

yx .   

 

In Finsler geometry ),( βα -metric is notified as a substantial and significant class of Finsler 

metrics. It can be depicted in the form ,),(
α

β
αφ == ssF ,where α  is the Riemannian metric,  

β  represents one form and φ  denotes the positive ∞
C  function on the domain of definition. 

Exceptionally, when 
s

1
=φ , the Finsler metric 

β

α 2

=F  is called Kropina metric. L. Berwald was 

the first one to introduce Kropina metric in connection with a two-dimensional Finsler space with 

rectilinear extremals and was studied upon by V. K. Kropina [7]. Whereas, Randers metric is 

regular Finsler metric, on the other hand Kropina metric is non-regular Finsler metric. Kropina 

metric is considered to be one of the significant and elementary Finsler metric with abundance of 

interesting and useful applications in physics, irreversible thermodynamics, dissipative mechanics 

and electron optics with a magnetic field ([6],  [16]).  Besides this, it has uses in applications 

related to control theory, relativistic field theory,  developmental biology and evolution. 

 

Rapsack's paper [13] has provided us a very important and necessary result related with the 

projective change, which deals with the necessity and sufficiency of Projective change. H. Park 

and Y. Lee , in 1984 [11] studied and put limelight on the projective change between a Finsler 

space with ),( βα -metric and the associated Riemmanian metric. In similar way, numerous 

papers have been devoted on the topic ‘Projective change’. As we have more examples in its 

context like Projective change between Finsler spaces with ),( βα -metric, studied by S. Bacso 

and M. Matsumoto [2].  A class of Projectively at metrics with constant flag curvature has been 

researched upon by Z. Shen and Civi Yildrim in [15].  In 2009, N. Cui and Y. Shen [4] were the 

ones who did a deep study on projective change between Z. Shen square metric and a Randers 

metric. Recently in 2012, Jingjnong and Xinyue Cheng carried further the topic of projective 

changes between ),( βα -metric dealing with Randers metric and Kropina metric. 

 

2. PRELIMINARIES 

 
The geodesics of F  are defined by a system of 2nd order differential equations as follows, 

 

                                                     ,0,2
2

2

=







+

dt

dx
xG

dt

xd i
i

 
 

where ),( yxFF =  represents a Finsler metric. 

 

A Finsler metric on a manifold M  is a 
∞

C -function ),0[: ∞→TMF  satisfies the following 

properties: 

 

 

1. Regularity: F  is 
∞

C  on  }0{\TM ; 



International Journal of Modelling, Simulation and Applications (IJMSA) Vol.1, No. 1 

11 

2. Positive homogeneity: ),(),( yxFyxF λλ =  for 0>λ ; 

3. Strong convexity: The fundamental tensor ),( yxg ij  is positive for all }0{\),( TMyx ∈ ; 

where ).,(][
2

1 2 yxFg ji
yyij =  The pair 

nFFM =),(  is called Finsler space. F  is called the 

fundamental function and ijg  is called the fundamental tensor of the Finsler space 
nF . 

 

),( yxGG ii =  are called spray coefficients of F , given by 
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                                                   (2.1) 

 

The tensor 
lkj

i

i

jkl dxdxdxDD ⊗⊗⊗∂=:  is called the Douglas tensor. A Finsler metric is 

called the Douglas metric if the Douglas tensor vanishes. 

 

It can be easily reviewed that the Douglas tensor is a projective invariant. In addition to this we 

have a vital fact which states that all Berwald metrics must be Douglas metrics. 

 

For a ),( βα -metric, 

                                              ,),(
α

β
αφ == ssF

 

where 
ji

ij yya=α represents a Riemannian metric and 
i

i yxb )(=β  denotes a one form with 

0b<β . For 







=

α

β
αφF  to be a regular Finsler metric ([1], [3]), the function )(sφ  has to be 

positive 
∞

C  function on an open interval ),( 00 bb− satisfying, 

 

                                         0

''22'
,0)()()()( bbsssbsss ≤≤>−+− φφφ . 

 

One knows that Randers metric is regular on the other hand Kropina metric is not regular, still the 

relation  

 

0)()()()( ''22' >−+− ssbsss φφφ  is completely valid for 0>s . 
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The geodesic coefficients of F  and α  are depicted in the form ),( yxG i
 and ),( yxG

i

α , 

respectively and the covariant derivative of β  with respect to α  is denoted by 

ji

ji dxdxb ⊗=∇ |β . Thus we have 

 

                                        
j

ijiijjiijijjiij brrbbsbbr =−=+= :),(
2

1
:),(

2

1
: ||||

 
 

and put 000000 :,:,:,: l

li

lil

j

j

ji

ij sbsyssyrryyrr ==== , etc. Importantly the geodesic 

coefficient ),( yxG i
 of F  is defined by, [11] 

 

              
i

i
iii

brQs
y

rQsQsGG )2()2( 0000000 +−++Θ++= αψ
α

ααα  ,                  (2.2) 

where  kj

iki

j sas =:   and 

                                                       
'

'

φφ

φ

s
Q

−
= , 

                                    
])()[(2

)(
''22'

'''''

φφφφ

φφφφφφ

sbs

s

−+−

+−
=Θ , 

                     
])()[(2 ''22'

''

φφφ

φ
ψ

sbs −+−
= ,                                                        (2.3) 

 

The ),( βα -metrics of Douglas type have been illustrated in [8]. 

 

Further to find the desired results, firstly we calculate the douglas tensor of ),( βα -metrics. 

Since 

                                        
iiii

brQsQsGG )2( 0000 +−++= αψαα . 

 

Clearly, the sprays 
i

G  and 
i

G
~

 are projective invariant providing the same Dou- 

glas tensor. Let 

 

                                           
iii

brQsQsT )2( 0000 +−+= αψα .                                (2.4) 

 

Then 
iii TGG += α

~
. 

 

From (2.3), we get 

 

]2)[(])([2 000

221'
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m
m
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∂

∂
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Now, if the metrics F  and F
~

 consists of the same Douglas tensor, i.e. 
i

jkl

i

jkl DD
~

= , , by 

definition of Douglas tensor and (2.5), we get 

 

                                        0)
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Thus we have a class of scalar functions, given by )(: xHH
i

jk

i

jk = , such that 

 

                                            
iim

y

m

y

ii HyTT
n

TT mm 00)
~

(
1

1~
=−

+
−− ,                      (2.6) 

 

where 
kji

jk

i
yyHH =:00 ,  

iT  and 
m

y
mT  are given by the relations (2.3) and (2.5) respectively. 

 

3. PROJECTIVE CHANGE BETWEEN TWO ),( βα -METRICS. 
 

For a Finsler space ),( FMF n = , the metric ),( yxFF =  is considered as a Finsler metric 

provided 0b<β  and their geodesic coefficients are given by (2.1) and (2.2). One can easily 

obtain the following: 

(a.) For Second approximate Matsumoto metric 
2

32

α

β

α

β
βα +++=F  , we have 

          ;
21

321
32

2

ss

ss
Q

−−

++
=      ;

)1)}(31(2831{2

12151261
2232

5432

sssbss

ssss

++++−−

−−−−
=Θ   

          .
)31(2831

31
232 sbss

s

++−−

+
=ψ                                                              (3.1) 

(b.) For Randers metric βα
~~~

+=F , we have 

           ;1
~

=Q                   ;
)1(2

1~

s+
=Θ              .0~ =ψ                                    (3.2)   

(c.) For Kropina metric 
β

α
~

~~
2

=F , we have 

            ;
2

1~

s
Q −=            ;~

~
2

b

s
−=Θ         .~

2

1~
2

b
=ψ                                        (3.3) 

 

Now we discuss the projective change between two ),( βα -metrics, 
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3.1 Projective change between 
2

32

α

β

α

β
βα +++=F  (2nd approximate Matsumoto 

metric) and βα
~~~

+=F  (Randers metric). 

 
Since the Douglas tensor is a Projective invariant, we have our respective propositions, 

 

Proposition 3.1. Let us consider an ),( βα -metric given by 
2

32

α

β

α

β
βα +++=F  and a 

Randers metric defined as βα
~~~

+=F  on an n-dimensional manifold )3( ≥n , where α  and α~  

denotes distinguish Riemannian metrics whereas β  and β
~

 denote non-zero 1-forms. The 

metrics F  and F
~

 are Projectively equivalent provided both are Douglas metrics and their spray 

coefficients are related by following equations 

 

                                                    ,
~

~
iii PyGG += αα                                             (3.4) 

 

                                   ],3)21[(2 2

| jiijji bbabb κκτ −+=                                    (3.5) 

 

where ),( yxPP =  is a scalar function on }0{\TM  and jib | ,  represents covariant derivatives 

of β  with respect to α . 

 

Proof: Since the sufficiency is obvious we need to prove the necessity. If F  and F
~

 consists of 

the same Douglas tensor on M , then the equation (2.6) is valid. On substituting (3.1) and (3.2) 

into (2.6), we get 
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where 
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iiiii ybrybbbssbA λβλββββ )85(5)}]23267(266{172[)2459(4( 2
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22
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        }),)3415(6 2 iyb λ+−  
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(3.7) 

 

and 
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                                                ),267(20 29

10 bP −= β  

                                                },28)21(82{ 2210

11 bbP −+−= β  

                                                ,352 11

12 β−=P  

                                                 ,128 12

13 β−=P                                                         (3.8) 

 

and .
1

1

+
=

n
λ

 
 

Thus (3.6) gives 
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Replacing 
iy  by 

iy−  in (3.9),  we get 

 
3

11

4

10

5

9

6

8

7

7

8

6

9

5

10

4

11

3

12

2

13

1 ααααααααααα iiiiiiiiiii AAAAAAAAAAA −+−+−+−+−+−  

+−+−+−−=+−+ 7

6

8

5

9

4

10

3

11

2

12

10001413

2

12 )(~~( ααααααααα PPPPPPsHAAA iiiii
 

).1312

2

11

3

10

4

9

5

8

6

7 PPPPPPP +−+−+− αααααα                                                        (3.10) 

 

Subtracting (3.10) from (3.9),  we get 
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Adding (3.9) and (3.10),  we get 
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From (3.11) we can see that 
isP 013

~~α  has the factor α . Now we divide the proof in two cases. 

Case I If αλα )(~ x≠ ,  then 
ii ssP 0

12

013
~128~ β−=   has the factor 

2α .  Because 
12β  and α  are 

relatively prime polynomials of 
iy , then ,0~

0 =is , which implies β
~

 is closed. 

Case II If αλα )(~ x= ,  then (3.11) reduces to 
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We observe that 
ii sxPsx 0

12

130
~)(128~)( βλλ −=   has the factor α . Since 0)( ≠xλ  then 

is0

12~β  

has  the factor α   implying ,0~
0 =is , i.e β

~
 is closed. 

 

Apparently Randers metric βα
~~~

+=F   is a Douglas metric provided β
~

  is closed. Thus we say 

F
~

 is a Douglas metric and since F  and F
~

 are having alike Douglas tensor, hence they both are 

Douglas metrics. Thus proving proposition 3.1. 

 

Now we are accessible to prove the following theorem, 

 

Theorem 3.1. Let us consider an ),( βα -metric given by 
2

32

α

β

α

β
βα +++=F  and a Randers 

metric defined as βα
~~~

+=F  on an n-dimensional manifold )3( ≥n , where α  and α~  denotes 

distinguish Riemannian metrics whereas β  and β
~

 denote non-zero 1-forms. The metrics F  and 

F
~

 are Projectively equivalent provided both are Douglas metrics and their geodesic coefficients 

are related by following equations 

 

                                                    ,
~

~
iii PyGG += αα                                               (3.14) 

                                    

where ),( yxPP =  is a scalar function on }0{\TM . 

 

Proof: Since F  and F
~

 are Projectively equivalen, they are having alike Douglas tensor 

implying that both are Douglas metrics. By [12], we know that ),( βα -metric 

2

32

α

β

α

β
βα +++=F  is a Douglas metric if and only if  

                                                 0| =jib                                                            (3.15) 

where jib |  represents the covariant derivatives of β  with respect to α . 

On substituting (3.15) and (3.1) into (2.1), we get 

 

                                                 .ii
GG α=                                                         (3.16) 

 

Since F  is Projectively equivalent to βα
~~~

+=F   and β
~

  is closed, F  is Projectively 

equivalent to α~ . Hence we have a scalar function ),( yxPP =  on }0{\TM  such that 

                                

  ,
~

~
iii

PyGG += α                                             (3.17) 

From (3.16) and (3.17), we have 

                                              

   ,
~

~
iii PyGG += αα                                                (3.18) 
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Thus proving the necessary part of the theorem. As F  and F
~

 are Projectively equivalent which 

completes the proof of theorem 3.1. 

 

Now we will show the projective equivalence between second pair of metrics, 

 

3.2 Projective change between 
2

32
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β

α

β
βα +++=F  (2

nd
 approximate 

Matsumoto metric) and  Kropina metric 
β

α
~

~~
2

=F  

First, we state the following 

 

Lemma 3.2. [8] Let 
β

α 2

=F be a Kropina metric on an n-dimensional manifold M. Then 

(1) For )3( ≥n , Kropina metric F with 02 ≠b  is a Douglas metric if and only if 

                                       

   )(
1

2 ikkiik sbsb
b

s −=                      (3.19) 

 

(2) For 2=n , Kropina metric F  is a Douglas metric. 

 

Following from [8] and [9] and bringing Theorem 3.1 in use, we immediately obtain: 

 

Proposition 3.1. Let us consider an ),( βα -metric given by 
2
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β
βα +++=F  and a 

Randers metric defined as 
β

α
~

~~
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=F  on an n-dimensional manifold with 3≥n , where α  and α~  

denotes distinguish Riemannian metrics whereas β  and β
~

 denote non-zero 1-forms. The 

metrics F  and F
~

 are Projectively equivalent provided following equations hold 
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where jib | ,  represents covariant derivatives of β  with respect to α . 

Proof.  Here we need to prove the necessary part since the sufficiency of the proposition is 

obvious. Let us assume the metrics F  and F
~

  with the same Douglas tensor on an n-dimensional 

manifold M )3( ≥n , then (2.6) is valid. On substituting (3.1) and (3.3) into (2.6), we get 
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where values of all the coefficients of different powers of α  are stated in equations (3.7) and 

(3.8) and 
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Further, (3.22) is equivalent to 
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Replacing 
iy  by 

iy−  in (3.23),  we get 
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Subtracting (3.24) from (3.23),  we get 
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Adding (3.23) and (3.24),  we get 
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From above equations, we observe that 

)(~~
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2 PPPPPPPA i ++++++ ααααααα is divided by β
~

. Since βµβ
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= , 

then 
12

1

2~~
αα PA i

 can be divided by β
~

. Since we have β
~

 as prime with respect to α  and α~ , 

hence ,~~~~~
00

2 sbsbA iii −= can be divided by β
~

. Thus )(xiϕ  is a scalar function, providing 
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Contracting (3.27) with 
j

iji yay ~:~ = ,  we get that 
ii sx ~)( −=ϕ . Then we have  
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b
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Thus by Lemma 3.2 
β

α
~

~~
2

=F  is a Douglas metric. As F  and F
~

 are having alike Douglas 

tensor, we consider them as Douglas metrics. 

 

Hence proving proposition 3.2. 

 

Now, we prove the next theorem which states, 

 

Theorem 3.3. Let us consider an ),( βα -metric given by 
2

32

α

β

α

β
βα +++=F  and a Randers 

metric defined as 
β

α
~

~~
2

=F  on an n-dimensional manifold with 3≥n , where α  and α~  denotes 

distinguish Riemannian metrics whereas β  and β
~

 denote non-zero 1-forms. The metrics F  and 

F
~

 are Projectively equivalent provided both are Douglas metrics and their geodesic coefficients 

are related following equations 
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b
GG θααα +++=                                             (3.29) 

 

where j

iji
bab =: , j

iji
bab
~~:

~
=  , 

2
2 ~

:
~

α
β=b , )(xττ = denotes a scalar function and 

i

i yθθ =  

represents a 1-form on the manifold M. 

 

Proof. On substituting (3.27) and (3.3) into (2.1), we have 
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With the projective equivalence of F  and F
~

 we have a scalar function ),( yxPP =  on 

}0{\TM  provided 
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From (3.17), (3.30) and (3.31), we have 
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Since RHS of (3.32) is quadratic in y, there exists a 1-form 
i

i yx)(θθ =  on M such that  Thus we 

have 
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Thus providing the necessity of the theorem. 

 

           Conversely, from (3.17), (3.31) and (3.14), we have 
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Hence  F  and F
~

 are Projectively equivalent. Thus completing the proof of theorem 3.3. 

 

4. METRICS WITH SPECIAL CURVATURE PROPERTIES 
 

As is well known, the Berwald curvature tensor of a Finsler metric F  is defined by 

 

                                             ,: ik

i

ji

jkl dxdxdxBB ⊗⊗∂⊗=  

where lkj
yyy

ii

jkl GB ][= and 
iG  are the spray coefficients of F . The mean Berwald curvature 

tensor is defined by 

                                                          ,: ji

ij dxdxEE ⊗=  

where 
m

mijij BE
2

1
:=   A Finsler metric is said to be of isotropic mean Berwald curvature if 

                                                         ji
yyij Fxc

n
E )(

2

1
:

+
=  

for some scalar function c(x) on M. 
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Clearly, the Finsler metric of isotropic Berwald curvature must be of isotropic mean Berwald 

curvature. 

 

A Finsler metric F is said to have isotropic S-curvature if FxcnS )(1+=  for 

some scalar function c(x) on M. 

 

Theorem 4.1. (See [5]) For a ),( βα -metric, the following are equivalent 

 

(a) F has isotropic S-curvature, i.e. S = (n+1)c(x)F  for some scalar function c(x) on M. 

(b) F has isotropic mean Berwald curvature. 

(c) β  is a Killing one form of constant length with respect to α . This is equivalent to 

.0000 == sr . 

(d) F has vanished S-curvature, i.e. S = 0. 

(e) F is a weak Berwald metric, i.e. E = 0. 

 

5. CONCLUSION 

 
Therefore in the present paper a study has been done on the projective change between two 

important ),( βα -metrics, 
2

32

α

β

α

β
βα +++=F  (2nd approximate Matsumoto metric) and 

βα
~~~

+=F  (Randers metric) and also between 2
nd

 approximate Matsumoto metric and 
β

α
~

~~
2

=F  

(Kropina metric), where  α  and α~  denotes distinguish Riemannian metrics whereas  β  and β
~

  

represents two non- 

zero 1-forms, this study has provided two important examples under the topic Projective Change 

between two significant metrics. 
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